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advantages and drawbacks. Some of them (the refractive lens) have been already introduced 
into miniature cameras (in webcams and mobile phones [17,18]) and were analyzed from 
corresponding optical power (OP) and root mean square (RMS) aberrations point of views 
[16]. 

However, the above-mentioned characterization (focused mainly on the mobile camera 
requirements) is not enough to conclude about their relevance for ophthalmic application 
since the AIOL sets very specific requirements, including on the point spread function (PSF) 
as well as on scattering and halo effects, which are usually not characterized in most of 
previous publications. Indeed, the characterization of those TLCLs is often made within 
relatively narrow scopes and there are many questions remaining unanswered due to the lack 
of well-defined inquiries from the ophthalmic community. Consequently, scientific 
publications with such specific analysis for the correspondence of TLCLs to requirements of 
AIOL are still missing. 

The current work aims 1- presenting to the scientific community the key criteria for the 
design of TLCL for ophthalmic (IOL) application, 2- investigating the TLCL approach that 
we have recently developed (using a floating electrode) and 3- answering several key 
questions (see Table 1) that might help ophthalmology experts to take decisions when 
considering various AIOL solutions. 

We shall start by describing the geometry of the TLCL we have developed. We shall then 
provide its standard and optimized characterization data (OP’s variability range and RMS 
aberrations). We shall also provide PSF measurement results, as well as optical performance 
(visual perception) data, including visual chart, light transmission and scattering that may 
affect the starburst and halo effects. 

During the recent years, we have conducted intensive discussions and consultations with 
experts from ophthalmology community. This effort brought us to the following list of 
requirements (see Table 1) that must be satisfied for an electrically variable lens to qualify as 
a candidate for an AIOL application. 

Table 1. Target specifications of the TLCL for AIOL application. 

Parameter Specification Comment 
Dynamic optical aperture (mm) ≥ 3 Must be combined with a fixed-focus IOL 
Dynamic focusing range (Diopters) ≥ 4 This should cover almost 100% of 

patients 
Default/Unpowered mode (Diopters) 0 Far distance vision at 0V (safety 

considerations) 
Focusing accuracy (Diopters) ≤ 0.25 Distance resolution 
RMS wavefront error (μm) 
High order aberrations 

≤ 0.2 
≤ 0.1 

Usual reference is λ/4 

PSF (85% encircled energy radius 
[arcmin]) 

≤ 2 Acceptable acuity 

Scattering (%) ≤ 5.5 Averaged between 450 nm – 650 nm 
Transmission (%) ≥ 90 Averaged between 450 nm – 650 nm 
Response time (sec) ≤ 1 1 cycle (far-near-far) 
Electric power consumption (μW) ≤ 10 Only the lens 
Thickness (mm) ≤ 1 Not critical 
Starburst and halo level ≤ Multifocal Ideally must be comparable to monofocal 

IOLs 

Most of the requirements (see parameters listed in Table 1) are rather simple to justify 
since they are directly related to the eye optics, while some others would need additional 
explanations. Namely, the human iris can expand up to 6mm, but the choice of the 3mm 
optical aperture for TLCLs is related to the fact that it is rather difficult to obtain high OP 
values with larger aperture refractive TLCLs. In the meantime, we have discovered that the 
combination of a small aperture (3mm) TLCL with a larger aperture (6 mm) fixed lens can 
provide good quality images (see hereafter). Also, to compensate the distance changes, 
usually 3D of OP should be enough for the majority of persons, but in some extreme cases, 
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we can see a need of up to 4D. The requirement on limited scattering (due to possible 
electrode pixels or molecular orientation thermal fluctuations) is mainly related to the halo 
effect (to avoid it) during the night driving, etc. 

In what follows, we shall try to characterise our lens (as example) and provide answers to 
key items of the Table 1. 

2. Lens design with floating electrode 

The schematic (cross section view) of the TLCL, we have developed recently [16], is 
presented in the Fig. 2(a). The NLC material 1 (Δn≈0.2, thickness ≈50μm) is sandwiched 
between two substrates (each of 0.1mm thickness). The bottom substrate is covered by a 
uniform transparent electrode (indium tin oxide, or ITO). The top substrate is covered (from 
the internal side) by a thin weakly conductive layer (WCL) with ≈10MΩ/sq sheet resistance, 
which is then covered by a metal layer that is further chemically etched to produce a hole 
patterned control electrode (HPE, with an internal radius r≈1.5mm). The same top substrate is 
also covered (from the external side) by an ITO layer that is not controlled (called “floating” 
electrode, since only the uniform ITO and hole patterned electrodes are actively controlled 
here). The details of the fabrication of this sandwich may be found elsewhere [16,17]. 

 

Fig. 2. Schematic (side view) presentation of the TLCL used in the present work. NLC: 
nematic liquid crystal, WCL: weakly conductive layer, ITO: uniform Indium Tin Oxide, HPE: 
hole patterned (control) electrode, PI: Polyimide (planar) alignment layers, α: pretilt angle, a) 
The TLCL is in the ground state (no electric excitation and zero OP), b) The TLCL is excited 
by a high frequency electric signal (high OP state), c) The TLCL is excited by a low frequency 
electric signal (zero OP). 

The operation principle of the proposed TLCL is as follows: in the absence of the electric 
field (ground state, Fig. (2a)), all NLC molecules (filled ellipses) are aligned (by means of 
Polyimide layers [19]) parallel to cell substrates (with a small “pretilt” angle α≈3° [19]) and 
the refractive index of the sandwich is spatially uniform. Thus, light propagating along the z 
axis will not be deviated. This state can be called as “passive far field” mode (PFF, with zero 
OP) for the TLCL (and consequently for the AIOL using it). The application of a high 
frequency electric signal results into the non-uniform reorientation of molecules (Fig. 2(b)) 
due to the attenuation of the electric potential when moving from the periphery (HPE, x = ± r) 
to the center of the lens, x = 0 [16,17]. In this case, the effective refractive index of the NLC 
layer neff(x) is higher in the center of the TLCL compared to the periphery and thus a gradient 
is created (along the x axis) that can focus light. The application of a low frequency electric 
excitation results into a more uniform reorientation of NLC’s molecules (since the electric 
potential propagates from the periphery to the center of the lens with less losses), the 
refractive index is again uniform (along the x axis, Fig. 2(c)) and light focusing is eliminated. 
This state can be called as “active far field” (AFF) mode for the AIOL implant. 

The addition of the floating electrode [16] is the equivalent of adding a parallel 
(distributed) capacitive charge in the central part of the lens that accentuates the drop of the 
electric potential in the center. This helps avoiding the flat central part and decreases the 
corresponding spherical aberrations. The typical driving technique for such a lens can be 
found elsewhere [17]. 
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It is important to mention that the NLC being a uniaxial material [12], the cell, described 
in Fig. 2, will focus only light of extra ordinary polarization (in the plane xz). That is the 
reason why we call it as “half-lens”. We thus need a second similar cell that must be rotated 
(at 90°) in the plane of substrates (around the z axis) and be attached to the first one 
(alternative approaches could be considered for very specific application cases [20–24]). In 
this way, the obtained “double lens” (called “full lens”) can focus unpolarised light [18]. If 
the substrates used are thin enough, two perpendicular polarizations of light will be focused 
almost on the same plane and there will be no noticeable degradation of the quality of 
obtained images [17]. All our characterizations (in the current work) are made for full lenses; 
the photography of a full TLCL with 3mm clear aperture (CA) and an external diameter of 
3.5 mm (with two control electrodes; the uniform ITO – grounded and the HPE as a control 
electrode) is shown at the top inset of Fig. 3. 

3. Experimental set-ups and methods 

There are various methods to qualify the optical quality of lenses, such as the measurements 
of the PSF, modulation transfer function (MTF), etc. The bottom part of the Fig. 3 represents 
schematically the experimental set up that was used in our work to characterize the basic 
optical properties of our lens by means of a Shack-Hartmann (SH) wavefront sensor (Imagine 
Optics HASO3-42). The SH wavefront measurement provides Zernike polynomial fits of the 
wavefront, from which it is very convenient to retrieve different types (more than 7th order) 
of wavefront aberrations, such as defocus, astigmatism, spherical, coma, etc. The defocus 
Zernike parameter is directly proportional to the OP of the lens in diopters and allows plotting 
the OP curve for dynamically tunable lenses vs electrical drive parameters. In the case of the 
Imagine Optics SH sensor and Zernike coefficients’ peak to valley normalization we have 

 ( ) 2OP Z 3 *16 / CA=  (1) 

where Z(3) is the defocus term in Zernike polynomials and CA is the value of clear aperture’s 
diameter. 

 

Fig. 3. Schematic presentation of the experimental set-up (bottom) used to measure the OP and 
aberrations of developed TLCLs (an example of which is shown in the top photo). 1- linearly 
polarized He-Ne laser; 2- half-wave plate within a rotating holder; 3 – prism of Glan within a 
rotating holder; 4 - beam expander (X~10); 5- TLCL; 6- imaging lens with 45mm focal length; 
7 - Shack-Hartmann wavefront sensor. 

Linearly polarized CW He-Ne laser 1 (operating at 632.8nm) was used as probe (Fig. 3). 
As we have already mentioned, because of the birefringent nature of the NLC, the full TLCL 
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OP’s analyses. The dynamic range of the obtained OP is presented versus the frequency of 
driving electrical signal (square shaped AC) in the Fig. 7(a). Those “transfer functions” are 
obtained for the same TLCL at two different fixed voltage values; U = 3VRMS and U = 
4.1VRMS. As one can see, the OP of the lens grows continuously with the increase of the 
frequency and then tends to saturate. The further increase of the frequency results in the slow 
decrease of the OP and to an increase of its aberrations (Fig. 7(b)). Thus, we shall not analyse 
that part of frequencies (beyond the maximum of OP). It is important noticing that, while the 
OP dependences look similar (for two voltage values), the RMS aberrations are very sensitive 
to the driving voltage (Fig. 7(b)). Thus, the control process can be optimized to obtain 
minimum possible aberrations (similar optimization was done for the lens-design without the 
floating electrode [25]). This optimization may involve the choice of “couples” of control 
parameters: the voltage and the frequency of the driving signal (we shall further call it as V-F 
control mode). 

 
Fig. 7. a) Transfer functions (clear optical power in diopters versus the driving frequency in 
kHz) of the TLCL for two fixed voltage values (solid line: U = 3VRMS and dashed line: U = 
4.1VRMS) and b) corresponding RMS aberrations (in μm). The red dashed horizontal line shows 
the maximum acceptable value for the IOL application. 

The intraocular application of such a lens may accept this approach (from the cost point of 
view) since the temperature of the lens is stable and the added value of distance 
accommodation may be tremendous. The corresponding trend is presented in the Fig. 8. As 
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OP and at 0.33 m, requiring 3D of OP, for example, for screen observation task). As a result, 
all other images (targets positioned at 1m, 0.5m and 0.25 m) appear blurry. 

Finally, to simulate the operation of an AIOL with our TLCL, we have simply adjusted 
the control parameters of the TLCL to optimize the contrast at all observation distances and 
the corresponding results are presented in the last line of the Fig. 14. As we can see, the 
quality of images is good at all distances and this process is continuous (not limited only to 
those 4 discrete distances). It is worth mentioning that, if the person would have many 
examples of fixed focus glasses (here, at least 4 units with various OPs), then we should 
compare all 5 images of the last raw with the left image of the first raw. Obviously 
transporting many glasses is not a very practical option. 

 

Fig. 14. Images recorded by using the imaging system with integrated TLCL (using the 
experimental set up presented in Fig. 6). 

5. Discussions and conclusions 

Given that the developed TLCL is an electrically variable gradient index (or GRIN) lens, its 
OP’s variability range decreases quadratically with the increase of its radius r (see Eq. (1) and 
[17,26–28]). While the quality of images obtained with a system combining the TLCL of 
3mm CA with the Canon camera is very good at all distances (Fig. 13), if desired, we could 
fabricate such TLCLs with larger CA also. For example, we could increase the CA above 
4mm with still an OP ≈2.3D that is enough to cover the majority of accommodation needs. 
Further increase of CA (with still acceptable OP values) is possible in the framework of a 
single aperture refractive lens design (as the one presented here) if the application can tolerate 
some more aberrations and more scattering. Other approaches of CA’s increase (that applies a 
double zone (Fresnel type) refractive lens or an additional ring-shaped electrode, or a lens 
with curved gap, etc.) have been demonstrated also ([13,29–31]). Such an increase might be 
interesting for contact lens [31] or augmented reality applications [32,33]. The introduction of 
additional electrodes or the segmentation of electrodes ([13,19,34]) may be used to enhance 
the capability of our lens to change the aberrations of the lens and of the AIOL. Thus, it may 
be possible to remotely correct/adjust the age-related natural changes of eye aberrations for 
the patient bearing the implant [7]. 

Another important aspect is the electrical power consumption of the lens when we are 
targeting portable implants (such as AIOL or accommodative contact lenses). Our lens 
assembly can be described as a capacitive charge the power consumption P of which can be 
expressed as 
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 22P FCV≈  (2) 

where F if the driving frequency, C is the capacitance (the experimentally measured value is 
C ≈100pF) and V is the voltage. When the lens is activated (V≥0), we can consider two 
extreme cases of operation; far and close distances. Referring on the Fig. 7(a), the value of P 
can thus be estimated to be P≈1μW for the AFF (at 0.5 kHz, corresponding to OP = 0) and 
P≤10μW for the close distance (5kHz for 4D, 3V). The experimentally measured value for 
the close distance operation (high OP) was indeed P≈10μW. Thus, as it can be estimated 
(from the Eq. (2)), the power consumption of this TLCL ranges from 1μW (active far focus) 
to 10μW (close focus). Obviously, the passive far field does not consume power. We think 
that this is an excellent performance. 

The use of a WCL imposes some temperature dependence of control parameters. The 
detailed analyses of our lens at 35°C has shown (not reported here for the sake of shortness) 
that all performance parameters remain similar with only one change; the frequency of the 
driving signal must be increased by approximately 60%. This will slightly increase also the 
power consumption of the lens. In addition, we have to take into account also the power 
consumption of the driving circuit, which obviously depends upon the type of the circuit and 
is out of the scope of the present work. 

Additional experiments performed (not reported here) have shown that the entire cycle of 
distance accommodation (close-far-close) is indeed below 1 sec. It is worth noticing that the 
use of the frequency as a control parameter allows the development of new driving regimes 
where the frequency jumps can be used (in addition to voltage kicks) to perform fast 
transitions between different values of OP ([35,36]). 

We did not perform separate studies of the halo generated by our lens since such 
investigations have been conducted in parallel [37] and the obtained results have shown that 
the performance of our lens is quite comparable with the monofocal IOLs (noticeably better 
compared to the performance of multifocal IOLs). 

It is worth noticing that the proposed TLCL has also excellent performance in terms of 
space utilisation. Indeed, as we can see from the Fig. 3, the clear aperture diameter is 
representing ≈86% of the external diameter of the lens (compared to other electrically 
variable solutions where this ratio may drop down to 30%). 

It is also interesting to notice that many lens designs might be difficult to transfer into 
production. In contrast, the proposed design of the lens is easily manufacturable even in old 
“second generation” LC display manufacturing lines. The panel fabrication of such lenses 
(thousands of such lenses on the same panel) was successfully performed (1.5% of lens-to-
lens standard deviation in the OP variability range). 

Finally, the “elephant in the room” is the question “how the focusing distance may be 
identified and communicated to the TLCL?”. To address this problem, we have developed 
and theoretically validated a very promising technique where the variations of inductive 
coupling of coils (in each eye implant) can be used for this purpose [38]. 

In conclusion, we think that the presented results (analyses of the TLCL with floating 
electrode) have shown that the optical performance of this lens design is excellent in almost 
all aspects that are important for the ophthalmic application (see Table 1). 
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